
 Service Based Objects (SBO’s) in Documentum
Documentum Business Object Framework which was introduced from Documentum 5.3 plays a key role in most of the
current Documentum implementations. Service based Object is one of the important member of Documentum BOF
family. Lets try to see what makes Service Based Objects very popular and how can you implement it.

What is a SBO

In simple terms SBO in Documentum can be compared to session beans of J2EE environment. SBO enable the
developers to concentrate just on the business logic and all the other aspects will be managed for you by the server. This
reduces the application code significantly and reduces lots of complexities. The biggest advantage of a BOF that its
deployed in a central repository. The repository maintains this module and DFC ensures that he latest version of the
code is delivered to the client automatically.

Service Based Objects are repository and object type in-depended that means the Same SBO can be used by multiple
Documentum repositories and can It can retrieve and do operations on different object types. SBO’s can also access
external resources for example a Mail server or a LDAP server. Prior to the introduction of Documentum Foundation
Services SBO’s were commonly used exposed to expose documentum web services.

An SBO can call another SBO or by any Type based Objects. (Type Based Objects (TBO) are a different kind of
Business Object types which I will explain in a different study note)

A very simple to understand example for a SBO implementation would be a Zip code Validator. Multiple object types
might have Zip code across multiple repositories. So if this functionality is exposed as a SBO it can be used by the
custom application irrespective of Object types and repositories. This Validator SBO can be used even by different
TBO’s for validations.

Here are some bullet points about SBO’s for easy remembering

SBO’s are part of Documentum Business Object framework
SBO’s are not associated with any repositories
SBO’s are not associated with any Documentum object types.
SBO information is stored in repositories designated as Global Registry.
SBO’s are stored in /System/Modules/SBO/<sbo_name> folder of repository. <sbo_name> is the name of SBO.
Each folder in /System/Modules/SBO/ corresponds to a individual SBO

How to implement a SBO using Composer

The steps to create a SBO are these.

1) Create a interface that extends IDfService define your business method
2) Create the implementation class implement write your business logic, This class should extend DfService and implement
the interface defined in Step 1
3) Create a jar file for the created Interface and another jar for the implementation class then create Jar Definitions
4) Create a SBO Module and Deploy your Documentum Archive using Documentum Composer (Application builder
for older versions)

Lets see these steps with an Example SBO Zip Code Setter, I am not covering the steps using application builder here.
The screenshots and the notes will give you an insight about how to use Documentum Composer to implement a
Service Based Object in Documentum version 6 or above.

Step 1 : Create an interface and define your Business method

The first step is to create a interface which will define the business functionality. This interface should extend IDfService

interface. Client application will use this interface to instantiate the SBO.

Service Based Objects in Documentum Ajith Prabhakar's Study Notes

www.ajithp.com 1 of 15

Click New –> Interface in Documentum Composer. Click on the Add button of Extended Interfaces and search for
IDfService. Select IDfService and click OK

Now Add the Business method ValidateZipCode() to interface. The code should look like the following.

Step 2 : Create the implementation class

All the Service Based Object implementation classes should extend from DfService class and implement the Interface

package com.ajithp.studynotes.sbo;

import com.documentum.fc.client.IDfService;

import com.documentum.fc.client.IDfSysObject;

import com.documentum.fc.common.DfException;

public interface IZipValidatorSBO extends IDfService {

 public void validateZipCode (IDfSysObject obj, String zipCode, String repository)throws DfException;

}

created in the first step. DfService class is an abstract class There are few methods which were abstract in 5.3 and
has provided with a default implementation in 6.0 and later

Method Name Returns More information
getVendorString() String This method’s default implementation returns a

empty String. Override to make changes to it.

Service Based Objects in Documentum Ajith Prabhakar's Study Notes

www.ajithp.com 2 of 15

Lets see some other important methods of DfService Class before we move further.

Managing repository sessions in SBO

As We saw the the previous table its always good practice to release the repository session as soon as you are done with
its use.

So the ideal way to do this should be like this.

Transactions in SBO

Another important thing is to know is how to handle transactions in SBO. Note that only session manager transactions
can be used in a SBO. System will throw an Exception when a session based transaction used within a SBO.

beginTransaction() will start a new Transaction and use commitTransaction() to commit it or abortTransaction() to
abort a transaction. Always ensure that you are not beginning a transaction where another transaction is active. You
can use isTransactionActive() to find out whether a transaction is active or not.

getVersion() String This method returns a version which is not right,
Override this method to return Major.minor version.

isCompatible() boolean The default implementation returns true if the
version is an exact match

Method Name Returns More information
getName() String This returns the fully qualified logical name of

the service interface
getSession() IDfSession This method returns IDfsession Object for the

docbase name which is passed as argument to
this method. You have to make sure that you call
releaseSession() after you are done with the
operation that involves session.

releaseSession() Releases the handle to the session reference
passed to this method.

getSessionManager
()

IDfSessionManager Returns the session manager.

// Get the session

IDfSession session = getSession(repoNam);

try {

// do the operation with session

} catch (Exception e){

// Process the exception

}finally {

// release the session

releaseSession(session)

}

Service Based Objects in Documentum Ajith Prabhakar's Study Notes

www.ajithp.com 3 of 15

Another important point is if your SBO doesn't start a transaction don't commit it or abort it in the SBO Code instead if
you want to abort the transaction use setTransactionRollbackOnly() method.

Other important points

1) Since SBO’s are repository independed do not hard code the repository names in the methods. Either pass the
repository name as method parameter or have it as a variable in SBO and use a setter method to populate it after
instantiating

2) Always try to make SBO’s stateless (Its a pain to manage state full SBO’s).

3) Don’t reuse SBO, Always create a new instance before a operation.

Now lets see how to code our ZipSetterSBO

Click on New –> Class, Click on the Browse button of Superclass and Search and Select DfService and in the
Interfaces search for the Interface created in the previous step and Click OK. Also select the option Inherited Abstract
Methods in Which method stubs would you like to create.

I had Overriden method getVersion() for the illustration purpose. See the code sample for the inline comments.

package com.ajithp.studynotes.sbo.impl;

import com.ajithp.studynotes.sbo.IZipValidatorSBO;

import com.documentum.fc.client.DfService;

Service Based Objects in Documentum Ajith Prabhakar's Study Notes

www.ajithp.com 4 of 15

import com.documentum.fc.client.IDfSession;

import com.documentum.fc.client.IDfSysObject;

import com.documentum.fc.common.DfException;

public class ZipValidator extends DfService implements IZipValidatorSBO {

public static final String versionString = "1.0";

// overriding the default

public String getVersion() {

return versionString ;

 }

public void validateZipCode (IDfSysObject obj, String zipCode, String repository) throws DfException {

 IDfSession session = getSession(repository);

 try {

 if (isValidUSZipcode(zipCode)){

 obj.setString("zipcode",zipCode);

 obj.save();

 }

 } catch (Exception e){

 /* Assuming that transaction is handled outside the code and this says DFC to abort the transaction

 in case of any error */

 getSessionManager().setTransactionRollbackOnly();

 throw new DfException();

 } finally {

 releaseSession(session);

 }

 }

private boolean isValidUSZipcode(String zipCode){

// implement your logic to validate zipcode.

// or even call a external webservice to do that

 // returning true for all zip codes

 return true;

 }

Service Based Objects in Documentum Ajith Prabhakar's Study Notes

www.ajithp.com 5 of 15

Step 3 : Generate Jar files and Create Jar Definitions

The next step in SBO creation is to create Jar files which will hold the interface and the implementation classes. These
jar files are required to deploy your SBO.

Use Composers/Eclipse Create Jar option or command line jar command to create the jar file

}

Service Based Objects in Documentum Ajith Prabhakar's Study Notes

www.ajithp.com 6 of 15

Selecting the sbo package to create the interface jar

Service Based Objects in Documentum Ajith Prabhakar's Study Notes

www.ajithp.com 7 of 15

Selecting the com.ajithp.studynotes.sbo.impl for implementation.

Look at the Composers Export Jar screenshots for Interface and implementation (Refer Eclipse Documentation for more
details). I think the figures posted above are self explanatory.

The Command line to create a Jar file is jar cf <name_of_jar> Please look at the Java Documentation for more details
on switches and options of Jar command.

The creation of Jar Definitions are new step added in Composer.

1) In Composer change the perspective to Documentum Artifacts Click New –> Other –> Documentum Artifacts –>
Jar Definition

Service Based Objects in Documentum Ajith Prabhakar's Study Notes

www.ajithp.com 8 of 15

2) Click Next and Enter the name of for the Jar Definition and click Finish

Service Based Objects in Documentum Ajith Prabhakar's Study Notes

www.ajithp.com 9 of 15

3) Select Type as Interface if the jar has only interface , Implementation if the jar has only implementation of interface
or Interface and Implementation if the single jar file has both interface and implementation. click on the Browse
button and browse to the jar created in the last step.

In Our case create two Jar Definitions The first one with type as Interface pointing to Jar Created for SBO and second
one with type Implementation pointing to the implementation jar

 Name the Interface jar def as zipcodevalidator and the implementation jardef as zipcodevalidatorimpl

Step 4 : Create a Module and Deploy the SBO

In Composer change the perspective to Documentum Artifacts then Click New –> Other –> Documentum Artifacts –
> Module

Give a valid name and leave the default folder and Click Finish

Service Based Objects in Documentum Ajith Prabhakar's Study Notes

www.ajithp.com 10 of 15

In the Module edit window select SBO from the dropdown

Now Click on Add Section of Implementation Jars of Core Jars. A new pop up window will appear which will have list
of all the Jar definitions set to Type Implementation and Interface and Implementation. Select the one you wanted to use
for ZipCodeValidatorSBO that is ZipCodeValidatorImpl.

Service Based Objects in Documentum Ajith Prabhakar's Study Notes

www.ajithp.com 11 of 15

Click on the Select Button near pointing to Class name and Select the implementation class. In this case ZipValidator

Now Click on Add Section of Interface Jars of Core Jars. A new pop up window will appear which will have list of all
the Jar definitions set to Type Interfaces and Interface and Implementation. Select the one you wanted to use for

Service Based Objects in Documentum Ajith Prabhakar's Study Notes

www.ajithp.com 12 of 15

ZipCodeValidatorSBO that is ZipCodeValidator.

For more details of other options refer to Documentum Composer Manual. Save the Module.

Now right click on the project and install the Documentum project

Service Based Objects in Documentum Ajith Prabhakar's Study Notes

www.ajithp.com 13 of 15

Click on the Login button after logged in Click on Finish to start the installation.

Look at the Documentum composer documentation to know more about the Installation options.

How to use SBO from a Client Application

follow the below steps to instantiate a SBO from a client application.

1) Get the Local client
2) Create a login info and populate the login credentials.
3) Create a IDfSessionManager object
4) Use the newService () from the Client Object to create a SBO instance

// create client

 IDfClient myClient = DfClient.getLocalClient();

 // create login info

 IDfLoginInfo myLoginInfo = new DfLoginInfo();

 myLoginInfo.setUser("user");

 myLoginInfo.setPassword("pwd");

 // create session manager

 IDfSessionManager mySessionManager = myClient.newSessionManager();

 mySessionManager.setIdentity("repositoryName", myLoginInfo);

 // instantiate the SBO

 IZipValidatorSBO zipValidator = (IZipValidatorSBO) myClient.newService(IZipValidatorSBO.class.getName(), mySessionManager);

Service Based Objects in Documentum Ajith Prabhakar's Study Notes

www.ajithp.com 14 of 15

 // call the SBO service

 zipValidator.validateZipCode(obj, zipCode, "repositoryName");

Service Based Objects in Documentum Ajith Prabhakar's Study Notes

www.ajithp.com 15 of 15

